BlackSkye View Providers

Introduction

Mi tincidunt elit, id quisque ligula ac diam, amet. Vel etiam suspendisse morbi eleifend faucibus eget vestibulum felis. Dictum quis montes, sit sit. Tellus aliquam enim urna, etiam. Mauris posuere vulputate arcu amet, vitae nisi, tellus tincidunt. At feugiat sapien varius id.

Eget quis mi enim, leo lacinia pharetra, semper. Eget in volutpat mollis at volutpat lectus velit, sed auctor. Porttitor fames arcu quis fusce augue enim. Quis at habitant diam at. Suscipit tristique risus, at donec. In turpis vel et quam imperdiet. Ipsum molestie aliquet sodales id est ac volutpat.

Dolor enim eu tortor urna sed duis nulla. Aliquam vestibulum, nulla odio nisl vitae. In aliquet pellentesque aenean hac vestibulum turpis mi bibendum diam. Tempor integer aliquam in vitae malesuada fringilla.

Elit nisi in eleifend sed nisi. Pulvinar at orci, proin imperdiet commodo consectetur convallis risus. Sed condimentum enim dignissim adipiscing faucibus consequat, urna. Viverra purus et erat auctor aliquam. Risus, volutpat vulputate posuere purus sit congue convallis aliquet. Arcu id augue ut feugiat donec porttitor neque. Mauris, neque ultricies eu vestibulum, bibendum quam lorem id. Dolor lacus, eget nunc lectus in tellus, pharetra, porttitor.

"Ipsum sit mattis nulla quam nulla. Gravida id gravida ac enim mauris id. Non pellentesque congue eget consectetur turpis. Sapien, dictum molestie sem tempor. Diam elit, orci, tincidunt aenean tempus."

Tristique odio senectus nam posuere ornare leo metus, ultricies. Blandit duis ultricies vulputate morbi feugiat cras placerat elit. Aliquam tellus lorem sed ac. Montes, sed mattis pellentesque suscipit accumsan. Cursus viverra aenean magna risus elementum faucibus molestie pellentesque. Arcu ultricies sed mauris vestibulum.

โ€

Conclusion

Morbi sed imperdiet in ipsum, adipiscing elit dui lectus. Tellus id scelerisque est ultricies ultricies. Duis est sit sed leo nisl, blandit elit sagittis. Quisque tristique consequat quam sed. Nisl at scelerisque amet nulla purus habitasse.

Nunc sed faucibus bibendum feugiat sed interdum. Ipsum egestas condimentum mi massa. In tincidunt pharetra consectetur sed duis facilisis metus. Etiam egestas in nec sed et. Quis lobortis at sit dictum eget nibh tortor commodo cursus.

Odio felis sagittis, morbi feugiat tortor vitae feugiat fusce aliquet. Nam elementum urna nisi aliquet erat dolor enim. Ornare id morbi eget ipsum. Aliquam senectus neque ut id eget consectetur dictum. Donec posuere pharetra odio consequat scelerisque et, nunc tortor.
Nulla adipiscing erat a erat. Condimentum lorem posuere gravida enim posuere cursus diam.

Full name
Job title, Company name

Decentralized GPU Marketplaces: Lowering AI Costs

The Rise of Decentralized GPU Marketplaces: Revolutionizing AI Costs
David
June 14, 2025
โ€ข
5 min read
Abstract image showing interconnected GPU units and cloud icons, with blockchain elements in the background, symbolizing decentralized computing and AI.

The convergence of cryptocurrency and artificial intelligence has accelerated dramatically since ChatGPT's debut in November 2022. One of the most exciting developments is the emergence of decentralized GPU infrastructure for AI model training and inferenceโ€”offering cost-effective alternatives to traditional cloud services.

๐Ÿ’ธ Understanding the GPU Cost Challenge

Training and deploying advanced AI models demands immense GPU power, but the costs are steep:

  • ๐Ÿ’ฐ NVIDIA A100: ~$10,000
  • ๐Ÿ’ฐ NVIDIA H100: ~$30,000

This pricing creates high barriers for independent developers and startups. Major cloud providers like AWS and Microsoft buy in bulk and charge hefty markups, controlling access to AI compute.

๐ŸŒ Akash Network: Pioneering Decentralized GPU Services

Akash Network is leading the charge against centralized cloud dominance.
โœ… Built on the Cosmos blockchain
โœ… Open-source and decentralized
โœ… Aims to democratize access to GPU computing

In June, Akash launched a GPU cloud testnet where:

  • ๐Ÿง‘โ€๐Ÿ’ป Anyone could register as a provider
  • ๐Ÿ› ๏ธ Developers could run model tests
  • ๐ŸŒ 1,300+ participants joined globally

This phase validated that both high-end (A100/H100) and consumer-grade GPUs could support AI workloads.

๐Ÿš€ Akash GPU Marketplace Goes Live

On August 31st, Akash officially integrated GPUs into its mainnet:

  • ๐Ÿ–ฅ๏ธ Multiple GPU types available
  • ๐Ÿ”ป Prices significantly lower than AWS, Google Cloud, and Azure
  • ๐ŸŽฏ Greater variety of GPUs than major providers

โš ๏ธ Performance benchmarks (latency, throughput) are still being evaluated.

๐Ÿ”ฌ Proving AI Training on Decentralized GPUs

Anil Murthy (Head of Product at Akash) proposed a bold experiment:

  • ๐ŸŽฏ Retrain Stable Diffusion v1.5 using Akash's GPU network
  • ๐Ÿง  Use 24,000 A100 hours
  • ๐Ÿ’ต Cost: ~$48,000 or 46,000 AKT tokens
  • ๐Ÿ“‚ Result: A fully open-source model, free from copyright restrictions

This is a fraction of the $600,000 cost for training Stable Diffusion v1.4โ€”marking a dramatic leap in cost-efficiency.

๐Ÿ“ˆ The Future of Decentralized AI Infrastructure

Akash is now a direct challenger to centralized cloud giants. Success will depend on:

  • ๐Ÿ” Sustaining competitive pricing
  • โšก Matching or surpassing legacy performance
  • ๐Ÿงช Completing flagship projects (like Stable Diffusion)
  • ๐ŸŒ Growing both supply (providers) and demand (AI engineers)

The retraining of SD 1.5 is a pivotal test of decentralized GPU viability.

๐Ÿ’ก Final Thoughts

Decentralized GPU marketplaces are reshaping AIโ€™s future by:

  • ๐ŸŒ Preventing cloud monopolies
  • ๐Ÿšช Opening doors to independent AI innovation
  • ๐Ÿ› ๏ธ Making powerful compute affordable and accessible

๐Ÿ”— BlackSkye complements this mission by connecting AI developers to idle GPU providers. With real-time pricing, pay-per-job billing, and performance transparency, BlackSkye offers a smarter way to access GPU powerโ€”without the legacy cloud costs.