BlackSkye View Providers

Introduction

Mi tincidunt elit, id quisque ligula ac diam, amet. Vel etiam suspendisse morbi eleifend faucibus eget vestibulum felis. Dictum quis montes, sit sit. Tellus aliquam enim urna, etiam. Mauris posuere vulputate arcu amet, vitae nisi, tellus tincidunt. At feugiat sapien varius id.

Eget quis mi enim, leo lacinia pharetra, semper. Eget in volutpat mollis at volutpat lectus velit, sed auctor. Porttitor fames arcu quis fusce augue enim. Quis at habitant diam at. Suscipit tristique risus, at donec. In turpis vel et quam imperdiet. Ipsum molestie aliquet sodales id est ac volutpat.

Dolor enim eu tortor urna sed duis nulla. Aliquam vestibulum, nulla odio nisl vitae. In aliquet pellentesque aenean hac vestibulum turpis mi bibendum diam. Tempor integer aliquam in vitae malesuada fringilla.

Elit nisi in eleifend sed nisi. Pulvinar at orci, proin imperdiet commodo consectetur convallis risus. Sed condimentum enim dignissim adipiscing faucibus consequat, urna. Viverra purus et erat auctor aliquam. Risus, volutpat vulputate posuere purus sit congue convallis aliquet. Arcu id augue ut feugiat donec porttitor neque. Mauris, neque ultricies eu vestibulum, bibendum quam lorem id. Dolor lacus, eget nunc lectus in tellus, pharetra, porttitor.

"Ipsum sit mattis nulla quam nulla. Gravida id gravida ac enim mauris id. Non pellentesque congue eget consectetur turpis. Sapien, dictum molestie sem tempor. Diam elit, orci, tincidunt aenean tempus."

Tristique odio senectus nam posuere ornare leo metus, ultricies. Blandit duis ultricies vulputate morbi feugiat cras placerat elit. Aliquam tellus lorem sed ac. Montes, sed mattis pellentesque suscipit accumsan. Cursus viverra aenean magna risus elementum faucibus molestie pellentesque. Arcu ultricies sed mauris vestibulum.

Conclusion

Morbi sed imperdiet in ipsum, adipiscing elit dui lectus. Tellus id scelerisque est ultricies ultricies. Duis est sit sed leo nisl, blandit elit sagittis. Quisque tristique consequat quam sed. Nisl at scelerisque amet nulla purus habitasse.

Nunc sed faucibus bibendum feugiat sed interdum. Ipsum egestas condimentum mi massa. In tincidunt pharetra consectetur sed duis facilisis metus. Etiam egestas in nec sed et. Quis lobortis at sit dictum eget nibh tortor commodo cursus.

Odio felis sagittis, morbi feugiat tortor vitae feugiat fusce aliquet. Nam elementum urna nisi aliquet erat dolor enim. Ornare id morbi eget ipsum. Aliquam senectus neque ut id eget consectetur dictum. Donec posuere pharetra odio consequat scelerisque et, nunc tortor.
Nulla adipiscing erat a erat. Condimentum lorem posuere gravida enim posuere cursus diam.

Full name
Job title, Company name

Kohya GUI on RunPod: LoRA Training Made Easy

Installing Kohya GUI on RunPod for Efficient LoRA Training
Daniel
June 14, 2025
5 min read
A server rack with glowing GPU cards, representing cloud computing and AI training.
Looking to train LoRA models using powerful GPUs for AI without breaking the bank? This comprehensive guide walks you through setting up Kohya GUI on RunPod's cloud platform, giving you access to high-performance computing resources like the RTX 3090 for efficient AI model training. First, you'll need to access RunPod's platform and select appropriate GPU resources. Navigate to RunPod's community cloud. Select an RTX 3090 (30GB RAM) or similar powerful GPU. Click "Deploy" and choose the web automatic template (version 6.0.1 or higher). Edit template overrides: Set container disk to 10GB and configure volume disk as needed. Click "Continue" and "Deploy". Once the container starts, connect via JupyterLab. After connecting to JupyterLab, follow these steps to install Kohya GUI. First, clone the Kohya_SS repository by running git clone https://github.com/bmaltais/kohya_ss.git in the workspace terminal. Then, navigate into the new Kohya directory using cd kohya_ss. Next, create a virtual environment with python -m venv venv and activate it by running source venv/bin/activate. Finally, install the required packages using pip install -r requirements.txt. If you encounter errors during installation, simply retry the command. If you encounter tkinter errors (very common), run these commands while the virtual environment is activated. To install tkinter, run apt-get update && apt-get install -y python3-tk. For optimal performance, install the latest PyTorch using pip install torch==2.0.1 torchvision==0.15.2 --extra-index-url https://download.pytorch.org/whl/cu118. Note that you can ignore any xformers-related messages as they are not needed for training. To start the Kohya interface, open a new terminal in the Kohya_SS directory. Run the launch command cd /workspace/kohya_ss && python kohya_gui.py. Then, open the provided Gradio link to access the interface. For successful training, first download a base model like Realistic Vision. Prepare high-quality, diverse training images. Configure the training parameters: specify model path and image directories, set network rank (128-256 works well), disable xformers for better performance, and configure epochs and batch size. Finally, save your configuration for future use. For best results, avoid repetitive backgrounds in training images. Reduce the "repeating" parameter for more frequent checkpoints. Experiment with different network ranks (128 for lighter models). Try various optimizers based on your specific use case. Monitor GPU memory usage and adjust batch size accordingly. With proper setup, you can complete training in minutes rather than hours, depending on your dataset size and chosen parameters. BlackSkye's decentralized GPU marketplace offers an excellent alternative for accessing powerful computing resources for AI model training at competitive rates. By connecting users with GPU providers directly, BlackSkye helps democratize access to the computing power needed for advanced AI projects like LoRA training.