BlackSkye View Providers

Introduction

Mi tincidunt elit, id quisque ligula ac diam, amet. Vel etiam suspendisse morbi eleifend faucibus eget vestibulum felis. Dictum quis montes, sit sit. Tellus aliquam enim urna, etiam. Mauris posuere vulputate arcu amet, vitae nisi, tellus tincidunt. At feugiat sapien varius id.

Eget quis mi enim, leo lacinia pharetra, semper. Eget in volutpat mollis at volutpat lectus velit, sed auctor. Porttitor fames arcu quis fusce augue enim. Quis at habitant diam at. Suscipit tristique risus, at donec. In turpis vel et quam imperdiet. Ipsum molestie aliquet sodales id est ac volutpat.

Dolor enim eu tortor urna sed duis nulla. Aliquam vestibulum, nulla odio nisl vitae. In aliquet pellentesque aenean hac vestibulum turpis mi bibendum diam. Tempor integer aliquam in vitae malesuada fringilla.

Elit nisi in eleifend sed nisi. Pulvinar at orci, proin imperdiet commodo consectetur convallis risus. Sed condimentum enim dignissim adipiscing faucibus consequat, urna. Viverra purus et erat auctor aliquam. Risus, volutpat vulputate posuere purus sit congue convallis aliquet. Arcu id augue ut feugiat donec porttitor neque. Mauris, neque ultricies eu vestibulum, bibendum quam lorem id. Dolor lacus, eget nunc lectus in tellus, pharetra, porttitor.

"Ipsum sit mattis nulla quam nulla. Gravida id gravida ac enim mauris id. Non pellentesque congue eget consectetur turpis. Sapien, dictum molestie sem tempor. Diam elit, orci, tincidunt aenean tempus."

Tristique odio senectus nam posuere ornare leo metus, ultricies. Blandit duis ultricies vulputate morbi feugiat cras placerat elit. Aliquam tellus lorem sed ac. Montes, sed mattis pellentesque suscipit accumsan. Cursus viverra aenean magna risus elementum faucibus molestie pellentesque. Arcu ultricies sed mauris vestibulum.

Conclusion

Morbi sed imperdiet in ipsum, adipiscing elit dui lectus. Tellus id scelerisque est ultricies ultricies. Duis est sit sed leo nisl, blandit elit sagittis. Quisque tristique consequat quam sed. Nisl at scelerisque amet nulla purus habitasse.

Nunc sed faucibus bibendum feugiat sed interdum. Ipsum egestas condimentum mi massa. In tincidunt pharetra consectetur sed duis facilisis metus. Etiam egestas in nec sed et. Quis lobortis at sit dictum eget nibh tortor commodo cursus.

Odio felis sagittis, morbi feugiat tortor vitae feugiat fusce aliquet. Nam elementum urna nisi aliquet erat dolor enim. Ornare id morbi eget ipsum. Aliquam senectus neque ut id eget consectetur dictum. Donec posuere pharetra odio consequat scelerisque et, nunc tortor.
Nulla adipiscing erat a erat. Condimentum lorem posuere gravida enim posuere cursus diam.

Full name
Job title, Company name

Optimize LLM Inference & GPU Performance ✨

Understanding and Optimizing LLM Inference on GPUs
Daniel
June 7, 2025
5 min read
Abstract representation of data processing on a GPU chip

When deploying large language models (LLMs), understanding how inference workloads interact with your GPU is crucial for controlling costs and maximizing performance.

This guide breaks down what happens during inference and offers practical strategies for optimization.

🧠 The Basics of LLM Inference

LLM inference is the process of generating tokens based on a user’s input. It follows a sequential pipeline:

  1. Tokenization – Text is converted into tokens the model understands
  2. Prefill Stage – The attention mechanism processes the entire input prompt
  3. Token Generation – The model generates one token at a time
  4. Caching – Each token is stored and influences future generations

Key insight 🤔: LLMs must retain all previous tokens during generation to ensure contextual coherence. This consumes significant GPU memory.

🖥️ What Happens on Your GPU

As an LLM processes a prompt, your GPU performs the following:

  • Converts text into token IDs using the model’s vocabulary
  • Transforms token IDs into embedding vectors (matrices)
  • Applies the model’s weights to process these embeddings
  • Uses the attention mechanism to determine token relevance

🔑 The Role of the KV Cache

The Key-Value (KV) cache stores past computations, so the model doesn’t reprocess the entire sequence each time it generates a token. While it significantly boosts speed, it also uses a lot of GPU memory.

🧮 GPU Memory Breakdown

GPU memory is generally split between:

  • Model Weights – ~2GB per 1B parameters (in FP16 precision)
  • KV Cache – Grows with the number of tokens generated

Example:

  • An 8B model (FP16) → 16GB for weights
  • On a 20GB GPU → Leaves ~4GB for KV cache and everything else

📏 Measuring Performance

Track these key metrics to evaluate and optimize inference:

  • Time to First Token – Measures the speed of prompt processing
  • Token-to-Token Latency – Speed of generating each subsequent token
  • Total Generation Time – Time from start to final output

✨ Common Query Patterns:

  1. Long input, short output – Heavy prefill, light generation
  2. Long input, long output – Most resource-intensive
  3. Short input, long output – Fast initial response, longer generation
  4. Short input, short output – Fastest overall scenario

🛠️ Optimization Strategies

To improve efficiency and reduce costs, consider the following:

  • 🔻 Quantization – Convert FP16 → FP8 → FP4 to reduce memory usage
  • 🧵 In-Flight Batching – Serve new requests as others complete
  • 🔗 Tensor Parallelism – Distribute models across multiple GPUs
  • 💾 Quantized KV Cache – Store more tokens within memory limits
  • ⚙️ Specialized Engines – Tailor models to frequent query patterns
  • 📊 Seasonal Engines – Adjust infrastructure to traffic trends

🧰 Tools for Implementation

Several tools can streamline and optimize your LLM deployments:

  • TRT-LLM – NVIDIA’s compiler for high-performance LLM inference
  • Triton – Open-source inference server for flexible deployment
  • NVIDIA Inference Microservice (NIM) – Enterprise-level deployment solution

🔭 Looking Forward

Precision formats are evolving toward even more memory-efficient inference:

Understanding your inference workload patterns and deploying the right optimization strategies can significantly reduce compute costs and improve responsiveness.

💡 Scale Efficiently with BlackSkye

BlackSkye’s decentralized GPU marketplace offers cost-effective, high-performance compute ideal for LLM inference workloads.

Benefits:

  • 🔄 Real-time pricing & transparent performance
  • 💰 Lower infrastructure costs
  • 📈 Scalable access to GPUs on demand

By tapping into BlackSkye, organizations can scale inference dynamically, without upfront infrastructure investments.