BlackSkye View Providers

Introduction

Mi tincidunt elit, id quisque ligula ac diam, amet. Vel etiam suspendisse morbi eleifend faucibus eget vestibulum felis. Dictum quis montes, sit sit. Tellus aliquam enim urna, etiam. Mauris posuere vulputate arcu amet, vitae nisi, tellus tincidunt. At feugiat sapien varius id.

Eget quis mi enim, leo lacinia pharetra, semper. Eget in volutpat mollis at volutpat lectus velit, sed auctor. Porttitor fames arcu quis fusce augue enim. Quis at habitant diam at. Suscipit tristique risus, at donec. In turpis vel et quam imperdiet. Ipsum molestie aliquet sodales id est ac volutpat.

Dolor enim eu tortor urna sed duis nulla. Aliquam vestibulum, nulla odio nisl vitae. In aliquet pellentesque aenean hac vestibulum turpis mi bibendum diam. Tempor integer aliquam in vitae malesuada fringilla.

Elit nisi in eleifend sed nisi. Pulvinar at orci, proin imperdiet commodo consectetur convallis risus. Sed condimentum enim dignissim adipiscing faucibus consequat, urna. Viverra purus et erat auctor aliquam. Risus, volutpat vulputate posuere purus sit congue convallis aliquet. Arcu id augue ut feugiat donec porttitor neque. Mauris, neque ultricies eu vestibulum, bibendum quam lorem id. Dolor lacus, eget nunc lectus in tellus, pharetra, porttitor.

"Ipsum sit mattis nulla quam nulla. Gravida id gravida ac enim mauris id. Non pellentesque congue eget consectetur turpis. Sapien, dictum molestie sem tempor. Diam elit, orci, tincidunt aenean tempus."

Tristique odio senectus nam posuere ornare leo metus, ultricies. Blandit duis ultricies vulputate morbi feugiat cras placerat elit. Aliquam tellus lorem sed ac. Montes, sed mattis pellentesque suscipit accumsan. Cursus viverra aenean magna risus elementum faucibus molestie pellentesque. Arcu ultricies sed mauris vestibulum.

Conclusion

Morbi sed imperdiet in ipsum, adipiscing elit dui lectus. Tellus id scelerisque est ultricies ultricies. Duis est sit sed leo nisl, blandit elit sagittis. Quisque tristique consequat quam sed. Nisl at scelerisque amet nulla purus habitasse.

Nunc sed faucibus bibendum feugiat sed interdum. Ipsum egestas condimentum mi massa. In tincidunt pharetra consectetur sed duis facilisis metus. Etiam egestas in nec sed et. Quis lobortis at sit dictum eget nibh tortor commodo cursus.

Odio felis sagittis, morbi feugiat tortor vitae feugiat fusce aliquet. Nam elementum urna nisi aliquet erat dolor enim. Ornare id morbi eget ipsum. Aliquam senectus neque ut id eget consectetur dictum. Donec posuere pharetra odio consequat scelerisque et, nunc tortor.
Nulla adipiscing erat a erat. Condimentum lorem posuere gravida enim posuere cursus diam.

Full name
Job title, Company name

Top 5 NVIDIA GPUs in 2025

Renting compute, running inference, or fine-tuning large models, understanding which GPUs dominate the landscape can help you optimize cost and performance.
Charlie D.
January 11, 2025
5 min read
nvidia gpu

Whether you're renting compute, running inference, or fine-tuning large models, understanding which GPUs dominate the landscape can help you optimize cost and performance. Here's a breakdown of the five most popular NVIDIA GPUs as of early 2025 — for BlackSkye users.

1. 🟩 NVIDIA GeForce RTX 3060

  • Best For: Entry-level fine-tunes, lightweight inference, and image generation jobs.
  • Why It Matters: It’s widely available and affordable, making it a favorite in distributed platforms like Salad and Promptus.
  • Usage Tip: Great for low-cost batch inference; use quantization to fit larger models.
  • Market Insight: One of the most common GPUs in use globally (Steam Survey).


2. 🟦 NVIDIA GeForce RTX 3080

  • Best For: High-throughput SDXL generations, multi-model deployments, and real-time inference.
  • Why It Matters: Strikes a balance between power and price. Ideal for developers needing 4K visuals and mid-scale models.
  • Usage Tip: Use Torch-TensorRT to squeeze the most out of its 10GB of VRAM.


3. 🟥 NVIDIA GeForce RTX 4090

  • Best For: High-performance fine-tunes (e.g., LLaMA 7B, Mistral), SDXL rendering, and multi-instance jobs.
  • Why It Matters: Offers 24GB VRAM, enabling training jobs that other consumer cards can’t handle.
  • Usage Tip: Use mixed precision training with PyTorch AMP for huge speedups.
  • Performance Note: A top performer on BlackSkye's serverless endpoints.


4. ⚙️ NVIDIA A100 Tensor Core GPU

  • Best For: Enterprise-grade training, large batch inference, and multi-user scheduling.
  • Why It Matters: Backbone of AI data centers; common across Voltage Park, Lambda Labs, and Genesis Cloud.
  • Usage Tip: Perfect for long-form LLM training or high-batch LoRA jobs.
  • Market Stat: Helped drive NVIDIA’s $35.6B in data center revenue (Q4 2024). (AP News)


5. 🚀 NVIDIA H100 Tensor Core GPU

  • Best For: Training GPT-class models, massive vision transformers, and enterprise-level inference APIs.
  • Why It Matters: The H100 is NVIDIA’s most advanced GPU with unparalleled throughput and memory bandwidth.
  • Usage Tip: Ideal for multi-node distributed training and inference pipelines.
  • Adoption Insight: A growing favorite in nonprofit and open-source AI infrastructure. (Trainy)


Key Takeaways

  • RTX 3060–3080: Great for affordability, test runs, or parallel inference jobs.
  • RTX 4090: Best value for fine-tuning and creator-heavy workloads.
  • A100 & H100: Go-to for serious training, long-running jobs, and professional-grade reliability.


NVIDIA’s near 90% market share (TechPowerUp) reflects its deep integration into both centralized and decentralized compute stacks — including those visible on the BlackSkye platform.


Need help matching a job to the right GPU? BlackSkye’s benchmark and trust score engine will guide you.


📍 Run smarter. Pay less. Choose better GPUs. — blackskye.io